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Internal wave fields generated by a translating
body in a stratified fluid:

an experimental comparison
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Uniform approximations for the combined permanent and transient start-up waves
produced by the impulsive motion of a body in a density-stratified fluid are calculated.
These new approximations to the wave field remove the unphysically diverging fluid
velocities and phase shifts near the boundary of the causality envelope associated
with previous non-uniform approximations. The calculated wave field is compared to
experimental measurements of the wave field generated by towing a spherical body
through a linearly stratified fluid. Synthetic schlieren, a technique previously used only
to analyse two-dimensional or axisymmetric flow, is developed further to allow com-
parison with this fully three-dimensional wave field. In particular, breadth averaging
across the tank is employed. Good agreement is found between the theoretical and
experimental results in the far field.

1. Introduction
Most studies of internal gravity waves generated by moving bodies within a stratified

fluid concentrate on the so-called permanent waves built up by the sustained motion
of the body. The flow is usually taken to be in a steady state and the transient start-
up waves created by the initial movement of the body are ignored (e.g. Mowbray &
Rarity 1967a, b; Lighthill 1978).

Transient and permanent waves were considered together for a horizontally towed
body by Chashechkin & Makarov (1984), by use of a uniform expansion of the
vertical displacement field. Sturova (1980) calculated the internal wave field for a
disturbance accelerating linearly from rest, then moving at a constant speed before
decelerating to rest. The problem of a body moving at steady velocity at arbitrary
angle to the vertical was also considered in Sturova (1980) and an expression for the
vertical displacement field was given.

A significant new approach to describing internal waves was taken by Voisin (1991,
1994) based on asymptotic approximations to internal potential fields described in
terms of Green’s functions. Voisin (1994) considered an arbitrarily moving point
source and was able to write down a non-uniform approximation to the internal
potential field with contributions both from the permanent waves, which are built up
during the sustained motion of the source, and the transient ‘start-up’ waves, which
are created as the source is impulsively started.

The present paper should be regarded as the second part of Scase & Dalziel
(2004), in which a method was given for finding solutions for the permanent waves
generated by a translating body, based on the general method of Voisin (1994). It was



306 M. M. Scase and S. B. Dalziel

found, as in Sturova (1980), using the method of stationary phase, that at most three
‘significant waves’ contribute to the flow field at a given point in space. These waves
were classified as upper flared, lower flared, upper cusped or lower cusped waves
according to their position and shape. It was also shown that the permanent waves
were contained within a region defined by causal restraints. This region was called the
‘causality envelope’. A method was also described for easily modifying point-source
approximations to the wave field to predict the wave field generated by a finite-sized
source.

As a body is impulsively started, a fan of internal waves emanates from near
its original position (e.g. Mowbray & Rarity 1967a; Bretherton 1967; Stevenson
1973; Lighthill 1978). These radiated waves have a broad frequency range. When
experiments are conducted in a laboratory there are obvious physical restrictions on
the maximum size of the tank that can be used. As such, for an impulsively started
steadily translating body, a significant part of the field of view is situated outside the
causality envelope, in a region where only the transient waves, due to the impulsive
start-up, exist.

The present paper builds on previous analysis to show that for a useful approxima-
tion to the transient start-up waves, a uniform approximation, unlike that used by
Voisin (1994), is required. It is shown that this new approximation preserves phase
continuity across the boundary of the causality envelope (Scase 2003; Scase & Dalziel
2004). One problem with the Voisin’s (1994) non-uniform approximation is that it
predicts diverging velocities and a phase shift near the boundary of the causality
envelope, meaning that any comparison with experimental data is not useful; this
is avoided with the present exposition. It is also shown that the present uniform
approximations, when applied, lead to a continuously differentiable wave field across
the boundary of the causality envelope. The matching between the surfaces of constant
phase for the permanent waves on one side and the transient waves on the other
has been drawn theoretically and visualized experimentally in a number of two- and
three-dimensional configurations by Stevenson (1973), Peat & Stevenson (1975) and
Woodhead (1983). It was also drawn in figure 4 of Voisin (1994). In all cases, the
phase discontinuity at the envelope was simply ignored.

Experiments are conducted using a development of the synthetic schlieren technique
described in Dalziel, Hughes & Sutherland (2000). All existing synthetic schlieren
methods are either two-dimensional (e.g. Sutherland et al. 1999; Dalziel et al.
2000; Sutherland et al. 2000) or are restricted to axisymmetric three-dimensional
configurations (Flynn, Onu & Sutherland 2003). By considering the three-dimensional
flow in the experimental tank to be made up of many thin two-dimensional
flows arranged next to each other, the equations which govern synthetic schlieren
calculations are solved. This approach allows breadth-averaged measurements to be
made of completely general three-dimensional flows. A comparison is made between
the velocity fields predicted by the theory and the experimental values and the
agreement is shown to be good.

It will be assumed throughout that the fluid is inviscid, incompressible, unbounded
and has a uniform stratification ρ0(z) = ρ00 exp {−βz}, where βg = N2. Here, N is the
constant buoyancy frequency defined by

N2 = − g

ρ0

dρ0

dz
,

g is the acceleration due to gravity, ρ00 is a reference density and ρ0(z) is the
background, hydrostatic density field. The ‘well-known’ Boussinesq approximation



Internal wave fields: an experimental comparison 307

(Boussinesq 1903) is made whereby density differences in the inertial and viscous
terms of the Navier–Stokes momentum equation are ignored.

The relevant non-dimensional parameters characterizing the flows considered are
the Reynolds and Froude numbers defined respectively as

R =
2v0a

ν
, F =

v0

Na
, (1.1)

where a is the characteristic length scale of the body being towed, e.g sphere radius.
Non-dimensionalization is as follows:

r� =
N r
v0

, u� =
u
v0

, t� = tN, (1.2)

where v0 = |v0|.
In § 2 the theoretical background established in Voisin (1994) and Scase & Dalziel

(2004) is briefly recapped and the key results from these papers are given. In § 2.2
a composite uniform approximation for the wave field is derived; this is compared
to the more general uniform expansion in § 2.3 and § 2.4. In § 2.5 the modification
from the point-source solutions to finite-sized body solutions is discussed as is wave
attenuation due to viscous effects. In § 3 the experimental technique is discussed. A
brief overview of two-dimensional synthetic schlieren is provided in § 3.1 and this is
extended in § 3.2 for use with fully three-dimensional flows. Results are presented in
§ 4 and conclusions are stated in § 5.

2. Theoretical background
In Scase & Dalziel (2004) a method was given for finding solutions for the

permanent waves generated by a translating body in a stratified fluid based on the
general method of Voisin (1994). The notation and geometrical set-up in the present
paper is the same as in both previous papers. The essential details are repeated here
for clarity.

2.1. Geometrical set-up

The velocity, u(r, t), and pressure perturbation, p′(r, t), fields can be written in terms
of a scalar ‘internal potential’, Ψ (r, t), as (Gorodtsov & Teodorovich 1980; Hart 1981)

u(r, t) =

(
∂2

∂t2
∇ + N2∇h

)
ψ(r, t), p′(r, t) = −ρ0

(
∂2

∂t2
+ N2

)
∂

∂t
ψ(r, t), (2.1)

where ∇h = (∂x, ∂y, 0). Such a representation is possible because the wave motion
has zero linearized potential vorticity (∇ × u) · ∇ρ/ρ00 (M. E. McIntyre, personal
communication), which follows from the linearized Euler equations. Taking the curl
of the velocity in (2.1) shows

ω(r, t) = N2

(
− ∂

∂y
,

∂

∂x
, 0

)
∂

∂z
ψ(r, t), (2.2)

which is approximately perpendicular to the gradient of the density field, ∇ρ, since
the horizontal gradients of the density field are small. Hence the use of a potential
function of the form given in (2.1) is possible. The perturbation to the background
density field is given by

ρ ′(r, t) =
N2ρ0

g

∂2

∂t∂z
ψ(r, t). (2.3)
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Figure 1. The geometrical set-up.

The internal potential satisfies the continuity equation

∇ · u ≡
(

∂2

∂t2
∇2 + N2∇2

h

)
ψ(r, t) = m(r, t), (2.4)

where m is the mass source term.
The moving point source, at position r0(t), say, has the form

m(r, t) = m0(t)δ(r − r0(t))H (t), (2.5)

where δ is the Dirac delta function and H is the Heaviside step function. The main
interest will be in the case of a source translating steadily, with constant velocity v0,
so that dr0(t)/dt = v0 for t > 0. Point-source models have been successfully used by
previous authors to model flows generated by bodies of finite extent (e.g. Mowbray &
Rarity 1967a, b; Stevenson 1968; Lighthill 1978).

The coordinates used are shown in figure 1. The origin O is fixed. At time t the
mass source is at O1 having position vector r0(t). Voisin’s (1994) calculation considers
the waves emitted at time τ , from the point S, say, lying between O and O1, and
reaching M at time t > τ , where M has position vector r = r0(τ ) + R(τ ) = r0(t) + r1,
in the notation of the figure. It will be useful to regard r1 as position in a moving set
of coordinates with origin O1.

The asymptotic expression for the internal potential is the result of summing all
the contributions from the source between τ = 0 and τ = t , namely (Voisin 1994)

ψ(r, t) ∼ − 1

(2π)3/2N

∫ t

0

m0

Rh(τ )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos

[
(t − τ )N

|Rz(τ )|
R(τ )

− π

4

]
[
(t − τ )N

|Rz(τ )|
R(τ )

]1/2
+

sin

[
(t − τ )N − π

4

]
[(t − τ )N]1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dτ,

(2.6)

valid for (t − τ )N � 1, where R(τ ) = (Rx, Ry, Rz), Rh(τ ) = (Rx, Ry, 0), R(τ ) = |R(τ )|
and Rh(τ ) = |Rh(τ )|. The cosine term represents internal gravity waves of frequency
ω = Rz(τ )N/R(τ ) propagating at an angle ϕ to the vertical where cosϕ = Rz(τ )/R(τ ).
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Contributions to this integral are separated naturally into those from buoyancy
oscillations with frequency N and gravity waves. The gravity waves have a phase, Φ ,
given by

Φ =
(t − τ )N |Rz(τ )|

R(τ )
. (2.7)

Voisin (1994) makes asymptotic approximations to the internal potential integral (2.6)
in order to describe the flow field. In particular, the stationary phase contributions
describe the so-called permanent wave field made up of those waves ‘continuously
built up by the motion of the source’. The asymptotic approximation to the internal
potential field for the permanent waves is a Liénard–Wiechert potential (Reitz &
Milford 1960). The expression for the permanent waves is given in terms of a retarded
time, τ = τs . This retarded time is the time at which the wave which reaches M at time
t was emitted from S. The retarded time is found from the stationary phase condition
∂Φ/∂τ |τ = τs

= 0 and is given by solutions of

t − τs =
R(τs)

v0(τs) ·
[

R(τs)

R(τs)
− R(τs)

Rz(τs)
êz

] . (2.8)

The expression for the internal potential for the permanent waves is then given by
(Voisin 1994)

ψp(r, t) ∼ − m0(τs)

2πN2|A|1/2

R(τs)

Rh(τs)|Rz(τs)|
cos

[
N

cg

|Rz(τs)| − π

2
H (−A)

]
, (2.9)

where cg = |cg| is the modulus of the group velocity given by

cg(τs) =
R(τs)

t − τs

= v0(τs) ·
[

R(τs)

R(τs)
− R(τs)

Rz(τs)
êz

]
R(τs)

R(τs)
, (2.10)

the unit vertical vector is denoted by êz and

A = R
γ0

c2
g

·
(

R
R

− R

Rz

êz

)
−

(
v0

cg

× R
R

)2

+ 2
v0

cg

· R

Rz

êz

∣∣∣∣
τ=τs

. (2.11)

Here γ 0(t) = d2r0/dt2 is the acceleration of the source. The quantity A is derived from
the second derivative of the phase, Φ , specifically

∂2Φ

∂τ 2

∣∣∣∣
τ=τs

=
N |Rz(τs)|cg(τs)

R(τs)2
A. (2.12)

Furthermore, (2.3) implies that for permanent waves

ρ ′
p(r, t) ∼ m0(τs)N

2ρ0

2πg

Rh(τs)|Rz(τs)|
R(τs)2Rz (τs)

1

cg|A|1/2
cos

[
N

cg

|Rz(τs)| − π

2
H (−A)

]
. (2.13)

Voisin’s (1994) non-uniform approximation for the internal potential, ψ , is split into
two parts: a permanent wave contribution (2.9) and a transient wave contribution.
An expression for the internal potential for these transient waves, ψt (r, t), is given in
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Figure 2. Voisin’s (1994) model of transient start-up waves, showing the diverging internal
potential near the boundary of the causality envelope (dashed black line). This leads to
unphysically large velocities predicted in the flow field. In the figure, a point source of strength 1
was started with tow angle α = π/3. The plane shown is y� = 10 at t� = 100. The colour scale is
shown in figure 3.

equation (3.9) of Voisin (1994), namely

ψ(r, t) ∼ − m0(0)

(2π)3/2N2rh

r

|z|

1 − v0(0)t

r
·
(

r
r

− r

z
êz

) sin

(
Nt |z|

r
− π

4

)
(

Nt |z|
r

)1/2

+
m0(0)

(2π)3/2N2rh

cos

(
Nt − π

4

)
(Nt)1/2

, (2.14)

where r = |(x, y, z)| is the distance from M to the origin O in figure 1, rh = |(x, y, 0)|
and êz is a unit vector in the vertical. The internal potential due to (2.14) is shown
in figure 2. The body was started at time t� = 0 at position r� = 0 and is now, at time
t� = 100, at r� ≈ (87, 0, 50). Only the internal potential field in the plane y� = 10 is
shown. The dashed curve shows the position of the causality envelope. Near to this
curve the magnitude of the internal potential diverges.

This expression relies on a linear approximation of the phase of the gravity waves
as

Φ(τ ) = λg(τ ) ∼ λ(g(0) + τg′(0)), (2.15)

where λ = Nt , a prime indicates differentiation with respect to τ and

g(τ ) =

(
1 − τ

t

)
|Rz(τ )|
R(τ )

. (2.16)

Permanent waves of a given frequency, and therefore a given angle of propagation, are
contained within a region bounded by the origin of the moving set of coordinates O1
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Figure 3. Grey scaling for figures 2, 4, 6 and 7, where ψ has been normalized by m0/(Nv0).

and the ‘causality envelope’. The causality envelope is so called because the boundary
is defined by the distance the permanent waves which were created at t = 0 have
travelled, so it is the boundary between permanent waves ‘created’ for t < 0 and for
t > 0.

Equation (2.14) is equivalent to

ψt (r, t) ∼ m0(0)

(2π)3/2Nrh

1

(λg(0))1/2(λg′(0))
sin

(
λg(0) − π

4

)
+

m0(0)

(2π)3/2N2rh

cos

(
λ − π

4

)
λ1/2

.

(2.17)

However, it is immediately clear that this expression is not defined on the surface
λg′(0) = 0 and this is exactly the boundary of the ‘causality envelope’ given by the
real roots of

[z + v0z(0)t]x2 − [v0x(0)tz]x + [z3 + y2{z + v0z(0)t}] = 0. (2.18)

Equation (2.18) can be derived directly from setting g′(0) = 0 or from the expression
given on p. 301 of Scase & Dalziel (2004). In the special case of horizontal towing,
(2.18) reduces to (

x − v0x(0)t

2

)2

+ y2 + z2 =

(
v0x(0)t

2

)2

(2.19)

showing that in this case the causality envelope is a sphere with diameter v0x(0)t
which intersects with O and O1, as was shown in Voisin (1994).

Hope for obtaining a comparison of the combined permanent waves and transient
waves with any experimental evidence near the causality envelope, using (2.14), is
therefore lost. Figure 2 shows the divergence of the internal potential field near the
boundary of the causality envelope (dashed black line) for a steadily towed body.

It should be noted that the expression for the permanent wave field (2.9) is a
non-uniform approximation. Evaluation of (2.9) requires solving (2.8) which can be
written as a cubic polynomial (equation (3.7) in Scase & Dalziel 2004). This cubic
has either one real root or three real roots and a caustic exists in the approximated
flow field where the number of real roots of the cubic changes. Equivalently, as two
real roots of (2.8) coalesce, the quantity A in (2.9) tends to 0. This leads to another
unphysical singularity in the approximated flow field. However, this singularity is
confined to a much smaller surface than the singularity at the causality envelope.
Removal of the caustic singularity would require a uniform expansion in terms of
Airy functions and has not been attempted here. These singularities are not visible in
the experimental comparison (figures 9, 11) since the singularity occurs very abruptly
near the caustic and unless the field is evaluated at exactly the caustic, the process of
breadth averaging (see § 3) removes any notable singularities. This is not true of the
non-uniform approximation to the transient wave field where a very clear singularity
in the wave field is observed around the causality envelope even after a breadth
averaging process.
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2.2. Composite uniform approximation to the wave field

In order to remove the unphysically large velocities (figure 2) associated with the non-
uniform approximation to the wave field, uniformly valid approximations to the wave
field are sought. In this section this goal is achieved by deriving a uniformly valid
composite approximation to the wave field, separating the permanent waves from
those due to the initial transient. As is shown later (§ 2.4) there are some advantages
to this formulation when compared with an approximation derived (in § 2.3) from a
general uniform expansion of the equations.

We consider the gravity wave contribution to the internal potential given by
ψgw =Re Ψgw , where

Ψgw ∼
∫ t

0

f (τ ) exp

{
i

[
λg(τ ) − π

4

]}
dτ, (2.20)

and the amplitude and the phase are defined respectively as

f (τ ) = − m0(τ )

(2π)3/2NRh(τ )[λg(τ )]1/2
, g(τ ) =

(
1 − τ

t

)
|Rz(τ )|
R(τ )

. (2.21)

It follows that

f (0) = − m0(0)r1/2

(2π)3/2Nrh[λ|z|]1/2 , (2.22)

g(0) =
|z|
r

, (2.23)

g′(0) =
|z|
rt

[
v0(0)t

r
·
(

r
r

− r

z
êz

)
− 1

]
, (2.24)

g′′(0) =
|z|
rt2

[
3

(
r · v0(0)t

r2

)2

−
(

v0(0)t

r

)2

+ 2
v0(0)t · êz

z

− 2

(
r

z
v0(0)t · êz + r

)
r · v0(0)t

r3
+

γ 0(0)t2

r
·
(

r
r

− r

z
êz

)]
(2.25)

The non-uniform expressions for the internal potential derived in Voisin (1994) are,
in the present notation, for τs �= 0,

Ψgw ∼

√
2π

λ |g′′(τs)|
f (τs) exp

{
i

[
λg(τs) − π

2
H (−g′′(τs))

]}
H (τs)

+ i
f (0)

λg′(0)
exp

{
i

[
λg(0) − π

4

]}
(2.26a)

where the first term is referred to as the permanent wave contribution and the second
term is referred to as the transient wave contribution. If τs = 0 then

Ψgw ∼
√

π

2λ|g′′(0)|f (0) exp

{
i

[
λg(0) − π

2
H (−g′′(0))

]}
. (2.26b)

However, these expressions (2.26) are not uniformly valid as τs → 0, i.e. as we
approach the causality envelope in space for a given time.

A locally uniform approximation in the neighbourhood of the causality envelope
can be found by adapting Lighthill’s (1978, § 4.11) approach for dealing with caustics.
If the stationary phase point, τs , approaches the endpoint τ = 0, the phase can be
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approximated by the quadratic expression

g(τ ) ∼ g(0) + τg′(0) +
τ 2

2
g′′(0). (2.27)

Hence we have approximately,

Ψgw ∼ f (0)

∫ ∞

0

exp

{
i

[
λ

(
g(0) + g′(0)τ + g′′(0)

τ 2

2

)
− π

4

]}
dτ

=

√
π

2λ|g′′(0)|f (0) exp

{
i

[
λ

(
g(0) − g′(0)2

2g′′(0)

)
− π

2
H (−g′′(0))

]}

×
{

1 − [1 − i sgn(g′′(0))][C + i sgn(g′′(0))S ]

(√
λg′(0)2

π|g′′(0)|

)
sgn(g′(0)g′′(0))

}
,

(2.28)

where

C (τ ) =

∫ τ

0

cos

(
πx2

2

)
dx, S (τ ) =

∫ τ

0

sin

(
πx2

2

)
dx, (2.29)

are the well-known Fresnel integrals. It can be shown that the limit of (2.28) for
τs �= 0 as λ → ∞ is given by

Ψgw ∼ f (0)

√
2π

λ |g′′(0)| exp

{
i

[
λg(0) − g′(0)2

2g′′(0)

]
− π

2
H (−g′′(0))

}
H [−g′(0)g′′(0)]

+ i
f (0)

λg′(0)
exp

{
i

[
λg(0) − π

4

]}
, (2.30)

a superposition of O(λ−1/2) permanent waves and O(λ−1) transient waves. If τs = 0 in
(2.28) then g′(0) = 0 and we recover (2.26b).

Note that if τs ∼ 0, then the expansion of the phase (2.27) shows that

τs ∼ − g′(0)

g′′(0)
, g(τs) ∼ g(0) − g′(0)2

2g′′(0)
. (2.31)

It follows from substitution of (2.31) into (2.26a) that the common form of both the
non-uniform approximation (2.26a) and the locally uniform approximation (2.28) in
the vicinity of the causality envelope as λ → ∞ is given by (2.30).

We now construct a uniformly valid composite solution for the wavefield based on
the non-uniform approximation in (2.26a), the ‘outer solution’ and the locally uniform
approximations (2.28), the ‘inner solution’. This composite uniform approximation is
made by adding the inner and outer solutions together and subtracting their common
form (2.30) in the overlapping region, close to the causality envelope (see e.g. Hinch
1991). This yields the uniformly valid composite approximation to the gravity wave
internal potential, given by

Ψgw ∼

√
2π

λ|g′′(τs)|
f (τs) exp

{
i

[
λg(τs) − π

2
H (−g′′(τs))

]}
H (τs)

+

√
π

2λ|g′′(0)|f (0) exp

{
i

[
λ

(
g(0) − g′(0)2

2g′′(0)

)
− π

2
H (−g′′(0))

]}
sgn(g′(0)g′′(0))

×
{

1 − [1 − i sgn(g′′(0))][C + i sgn(g′′(0))S ]

(√
λg′(0)2

π|g′′(0)|

)}
. (2.32)



314 M. M. Scase and S. B. Dalziel

If both sgn(0) and H (0) are defined such that sgn(0) = 0 and H (0) = 1/2, then (2.32)
is uniformly valid for all τs .

The approximation (2.32) has several appealing properties. The first term is simply
the permanent wave contribution of the non-uniform approximation (2.9) and (2.26a)
calculated by Voisin (1994). Hence, in regions where more than one permanent wave
contributes to the wave field (cf. ‘regions of interference’ Scase & Dalziel 2004), the
additional waves may simply be superposed onto the wave field as before. The second
term may be loosely regarded as ‘the transient wave field’, equivalent to the O(λ−1)
term in (2.26a), and will be referred to as such hereafter for simplicity. However,
this second term, whilst certainly containing the transient wave field, is of O(λ−1/2)
and can significantly contribute to the permanent wave field. As such this second
term does not strictly contain only transient waves. Instead of diverging and having
a phase shift at the causality envelope as the non-uniform approximation does, the
composite uniform approximation is both continuous and differentiable.

The complete wave field, including permanent waves, the newly derived approxima-
tion for transient gravity waves and transient buoyancy oscillations is given by
ψ = ReΨ , where

Ψ (r, t) ∼

√
2π

λ|g′′(τs)|
f (τs) exp

{
i

[
λg(τs) − π

2
H (−g′′(τs))

]}
H (τs)

+

√
π

2λ|g′′(0)|f (0) exp

{
i

[
λ

(
g(0) − g′(0)2

2g′′(0)

)
− π

2
H (−g′′(0))

]}

× sgn(g′(0)g′′(0))

{
1 − [1 − i sgn(g′′(0))][C + i sgn(g′′(0))S ]

(√
λg′(0)2

π|g′′(0)|

)}

+
m0(0)

(2π)3/2N2rh

cos

(
λ − π

4

)
λ1/2

. (2.33)

The wave field may be constructed exactly as before, with the permanent wave
contributions being included only when 0 � τs � t , and two additional terms represent-
ing the transient wave field generated by the impulsive start-up motion.

Making the comparison between the new transient wave approximation (the second
and third terms in (2.33)) (figure 4) with Voisin’s previous model (2.14) (figure 2)
shows why the uniform approximation is required if comparison is to be made
with experiment. With the non-uniform approximation a banding appears near the
boundary of the causality envelope where the internal potential for the transient
waves diverges. This is shown more clearly in figure 5. The internal potential field has
been plotted for x� ≈ 36, y� = 10, t� = 100 for both non-uniform (dashed) and com-
posite uniform (solid) approximations. Away from the causality envelope both ap-
proximations coincide as expected. However, close to the causality envelope (z� ≈ −55)
the non-uniform approximation diverges.

Figure 6 shows the internal potential in the y� = 10 plane for the permanent wave
field, calculated using the method described in Scase & Dalziel (2004). In figure 7 the
permanent waves are now added to the new transient wave terms in (2.33) showing the
full composite uniform approximation to the internal potential function (2.6). With
the composite uniform approximation to the transient wave field, the amplitude of
the combined wave field remains continuous and differentiable across the boundary,
and the phases match.
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Figure 4. The composite uniform internal potential field for transient start-up waves. The
field show has the same initial parameters as in figure 2. With the composite approximation,
divergence of the internal potential only occurs near g′(0)g′′(0) = 0.
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Figure 5. The divergence of the non-uniform approximation is clearly shown by plotting the
internal potentials from figure 4 (solid) and figure 2 (dashed). Away from the causality envelope
near z� ≈ −55 the two solutions coincide, but near the causality envelope the non-uniform
solution diverges.

2.3. General uniform expansion

An alternative approach to those discussed in § 2.2 is to use a general uniform
expansion of (2.6) that treats both sets of permanent and transient waves together.
This is equivalent to approximating (2.6) by considering the endpoint contribution
from τ =0 and the stationary phase contribution from τ = τs together. A suitable
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Figure 6. The internal potential field for the permanent waves. The point source was towed
with α = π/3. The field shown is at t� = 100 and y� = 10.
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Figure 7. The internal potential field for both transient start-up waves and permanent
waves. The point source was towed with α = π/3. The field shown is at t� = 100 and y� = 10.

method for achieving this is given in Bleistein (1966, § 5), Bleistein & Handelsman
(1986, § 9.4) and Felsen & Marcuvitz (1994, § 4.6), and an outline of the method is
presented here. Let

I (λ) =

∫ ∞

0

f (τ ) exp

{
i

[
λg(τ ) − π

4

]}
dτ, (2.34)
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where f and g are analytic functions in some domain, D , containing the contour of
integration, τ =0 and τ = τs where g has a simple saddle, i.e.

g′(τs) = 0, g′′(τs) �= 0. (2.35)

The phase g is replaced by

g(τ ) − g(0) = µ

[
q2

2
+ aq

]
, (2.36)

where

µ = sgn(g′′(τs)), a = −sgn(τs)
√

2|g(τs) − g(0)|. (2.37)

Then substitution of (2.37) into (2.34) gives

I (λ) = exp

{
i

[
λg(0) − π

4

]}∫ ∞

0

(
f (τ )

dτ

dq

)
exp

{
iλµ

[
q2

2
+ aq

]}
dq. (2.38)

The contour of integration is rotated using q = ζeiµπ/4. It follows that, provided f

and g are suitably well behaved as τ → ∞, then

I (λ) = exp

{
i

[
λg(0) − π

2
H (−µ)

]} ∫ ∞

0

G(ζ )e−λ(ζ 2/2+bζ ) dζ, (2.39)

where b = ae−iµπ/4 and G(ζ ) = f (τ )dτ/dq . Without loss of generality, the function G

is then written as

G(ζ ) = σ0 + ζσ1 + ζ (ζ + b)G1(ζ ), (2.40)

for some function G1. Evaluating G at ζ = 0 and ζ = −b gives

σ0 =
f (0)µa

g′(0)
, σ0 − bσ1 =

f (τs)√
|g′′(τs)|

, (2.41)

respectively. Defining

Vr (s) =

∫ ∞

0

ζ re−[ζ 2/2+sζ ]dζ, (2.42)

it follows from (2.39), (2.40) and (2.42) that

I (λ) ∼ exp

{
i

[
λg(0) − π

2
H (−µ)

]}{
σ0

λ1/2
V0(

√
λb) +

σ1

λ
V1(

√
λb)

}
+ O

(
1

λ3/2

)
. (2.43)

The functions V0 and V1 may be straightforwardly expressed in terms of Fresnel
integrals, and it follows that

I (λ) ∼
√

π

2λ|g′′(τs)|
f (τs) exp

{
i

[
λg(τs) − π

2
H (−µ)

]}

×
{

1 + (1 − iµ)(C + iµS )

[√
2λ

π
|g(τs) − g(0)|

]
sgn(τs)

}

+ i
µsgn(τs)

λ
exp

{
i

[
λg(0) − π

4

]}[
f (τs)√

2|g′′(τs)| |g(τs) − g(0)|
− f (0)

|g′(0)|

]
, (2.44)

with errors of O(λ−3/2). It can be shown that if additional assumptions are made
regarding the separation of τs from 0, such that (2.31) holds, then using the result
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that for x ∈ ��0

(C ± S )(x) ∼ 1 ± i

2
∓ i

πx
exp

{
±i

πx2

2

}
as x → ∞, (2.45)

applied to (2.44) recovers the non-uniform approximation (2.26a).

2.4. Application of the composite uniform and general uniform expansions

In contrast with the non-uniform approximation of Voisin (1994), both the composite
uniform approximation (2.32) and the general uniform approximation (2.44) are
uniformly valid as τs → 0 (i.e. as the causality envelope is approached in space), for a
given time. Hence, both approximations remove both the unphysically large velocities
and the phase shift predicted by the existing non-uniform approximation to the wave
field (2.26) close to the causality envelope. There are some differences between the
application of the two approximations however.

When the composite uniform approximation (2.32) is applied, exactly the same
method of application may be employed as with the non-uniform approximations
(Voisin 1994). The permanent wave contributions can be calculated individually
and the causality condition that 0 � τs � t can be applied. The superposition of the
permanent waves and the transient wave contributions may then be found.

With the general uniform approximation (2.44), the condition that 0 � τs is auto-
matically applied, due to the range of integration over which Vr (s) is defined,
(2.42). The condition that τs � t can still be applied by discarding any contribution
to the permanent wave field (the O(λ−1/2) term in (2.44)) if τs > t . However, an
added complication exists with the general uniform approximation compared to the
composite uniform approximation. The O(λ−1) transient wave contribution in the
general uniform approximation (2.44) explicitly depends on the retarded time τs . For
regions of interference, where more than one permanent wave contributes to the wave
field (Scase & Dalziel 2004), this necessarily introduces a problem as the transient
wave field must be included only once in the superposition. One possible remedy is
to use the general uniform approximation for the permanent wave with smallest τs

and then add on permanent waves using the standard non-uniform approximation
(the O(λ−1/2) term in (2.26a)). This is less satisfactory than the simple use of the
composite uniform approximation. For the remainder of the present paper we will
simply employ the composite uniform approximation for this reason.

2.5. Extended sources and viscous attenuation

In order to make a meaningful comparison between the theoretical results described
above and laboratory experiments, the finite size of the source generating the waves
and the effect of the viscosity found in real fluids are taken into account. As in
Dupont & Voisin (1996), Scase (2003) and Scase & Dalziel (2004), the internal wave
field for an extended source, in this case a sphere, can be approximated from the
point-source solution. The calculated internal potential should simply be multiplied
by the spatial Fourier transform of the source.

The same source as in Dupont & Voisin (1996), Scase (2003) and Scase & Dalxiel
(2004) is used here, namely

m(r, t) =
3

2a
{v0 · r(t)}δ(|r(t)| − a), (2.46)
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and the Fourier transform of this source is given by

M(k, t) =

∫
�3

m(r, t) eik · r dr = 6iπa3(v0 · k)
j1(ka)

ka
, (2.47)

where j1 is a spherical Bessel function of the first kind. For the transient gravity
waves

ω =
N |z|

r
, cg =

r
t
, k =

ω

cg

(
r
r

− r

z
êz

)
, (2.48)

where cg = |cg|.
That viscosity acts to attenuate internal waves is well known and has been

considered by many authors (e.g. Lighthill 1978; Dupont 1995). Viscous attenuation
on internal waves generated by a horizontally towed cylinder was considered by
Stevenson, Chang & Laws (1979) and viscous attenuation on internal waves generated
by either a horizontally or vertically towed cylinder was considered by Stevenson,
Woodhead & Kanellopulos (1983). Derivations for the effective strength of the viscous
attenuation based on a given internal wave’s wavenumber are provided in both
Lighthill (1978) and Dupont (1995). Viscous attenuation of the energy of the waves
is at a rate ν|k|2 per unit time, which is equivalent to ν|k|4/(Nkz) per unit distance
along the wave beams. As derived by Dupont (1995), to take into account the effects
of viscosity, the internal potential for a given gravity wave obtained without viscosity
must be multiplied by

exp

{
−ν|k|3R2

2NRh

}
. (2.49)

It follows simply from (2.49) that the waves which are most severely damped by
viscosity are the short-wavelength, large-wavenumber waves.

3. Experimental technique
A variety of experimental techniques are available for visualizing internal waves.

Classical methods include interferometry (see Van Dyke 1982, e.g. figures 83 and
143), shadowgraph visualizations (a technique often associated with the visualization
of shock fronts; see Van Dyke 1982), schlieren visualizations, and visualization by
the use of Moiré fringes. Interferometry involves splitting phase-locked light into two
beams. One beam passes through the experimental tank and the other passes around
the tank via a set of mirrors for example. The beams are brought back together on a
visualising surface. This technique gives quantifiable data for the fluid density at given
heights within the tank, but is extremely sensitive and so experimentally intricate.
Examples of internal wave visualisation by classical schlieren include Mowbray &
Rarity (1967a, b) and Stevenson (1968). An example of internal wave visualisation by
Moiré fringes is included in Sakai (1990). These methods rely on the same underly-
ing physical process. As the density of a medium is increased, the speed of light
propagation through this medium is decreased. A perturbation to the density field
corresponds to a perturbation to the refractive index field. Perturbations to the
density field therefore cause deflections in the light rays which can then interfere both
constructively and destructively. It is these regions of interference which are visualized.
All three methods have significant disadvantages when quantitative information about
the density field is required and an extensive discussion of some of these deficiencies
is provided in Dalziel et al. (2000). Visualizing regions of constructive and destructive
interference does not provide enough information about how the light rays have been
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deflected for the inverse problem, of finding the perturbation to the density field, to be
solved. The deficiencies of these experimental techniques have largely been overcome
by a method known as ‘synthetic schlieren’.

Previously synthetic schlieren has only been used in two dimensions, usually in a
Cartesian frame (Sutherland et al. 1999, 2000) and more recently in an axisymmetric
set-up (Flynn et al. 2003). However, these arrangements are not suitable for analysing
the internal waves generated by a sphere translating at arbitrary angle to the vertical,
where the flow is fully three-dimensional. Hence, a different approach is used here.

It is important to note that this modification to the experimental technique will only
produce a breadth-averaged measurement of the gradients of density perturbation
or vertical velocity. This method cannot produce fully three-dimensional information
about the flow. However, these measurements can be compared directly to breadth-
averaged quantities predicted by the theory of § 2.

3.1. Overview of two-dimensional synthetic schlieren

The path of a light ray passing through a medium with refractive index field n(x, z)
is governed by the following coupled ordinary differential equations (Weyl 1954):

d2ξ

dy2
=

[
1 +

(
dξ

dy

)2

+

(
dζ

dy

)2 ]
1

n

∂n

∂x
, (3.1a)

d2ζ

dy2
=

[
1 +

(
dξ

dy

)2

+

(
dζ

dy

)2 ]
1

n

∂n

∂z
, (3.1b)

where the position of the light ray is given by x = (ξ (y), y, ζ (y)). Equations (3.1a) and
(3.1b) can be derived from the eikonal equation in the form(

d

ds

[
n
dx

ds

]
,

d

ds

[
n
dz

ds

])
=

(
∂n

∂x
,
∂n

∂z

)
, (3.2)

where ds =
√

1 + ξ ′2 + ζ ′2 dy, dn/dy = ξ ′∂n/∂x + ζ ′∂n/∂z and a prime denotes dif-
ferentiation with respect to y.

By assuming that deflections to the path of the light ray are small† (i.e. that
dξ/dy � 1 and dζ/dy � 1) equations (3.1) are decoupled as

d2ξ

dy2
=

1

n

∂n

∂x
,

d2ζ

dy2
=

1

n

∂n

∂z
, (3.3)

which gives

ξ (y) = ξi + y tan φξ +
y2

2n

∂n

∂x
, ζ (y) = ζi + y tan φζ +

y2

2n

∂n

∂z
, (3.4a, b)

for y ∈ [0, W ], where φζ is as in figure 8. If the refractive index is decomposed
as n(x) = n00 + n0(z) + n′(x), where n00 is a nominal reference refractive index, n0(z)
represents spatial variations associated with the known base state (i.e. the background
stratification) and n′(x) is the perturbation to this initial state generated by the flow,
then the shift in the apparent origin of the light ray is given by

(�ξa, �ζa) =
W (W + 2B)

2

1

n00

(
∂n′

∂x
,
∂n′

∂z

)
, (3.5)

† This assumption can be avoided, as pointed out by Dr L. Maas, Royal Netherlands Institute
for Sea Research, see the Appendix.
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Figure 8. Experimental set-up for synthetic schlieren. The apparent origin of the light ray is
at (ξa, ζa); it is incident on the back of the tank at (ξi, ζi) and exits the tank at (ξe, ζe).

where B is the distance from the illuminated dot pattern to the back of the experi-
mental tank and W is the width of the tank (see figure 8). To a good approximation,
the relationship between the density of the fluid and the refractive index is linear with

∇n =
dn

dρ
∇ρ = β

n00

ρ00

∇ρ, (3.6)

where β ≈ 0.184 (Weast 1981). Hence the relationship between the density perturbation
to the flow field and the apparent shift in the origin of a given light ray is

(�ξa, �ζa) =
W (W + 2B)

2

β

ρ00

(
∂ρ ′

∂x
,
∂ρ ′

∂z

)
. (3.7)

3.2. Modification for three-dimensional experiments

3.2.1. Optics

By considering the tank to be split into m thin, vertical, equally sized slices with
normals parallel to the y-axis and neglecting the variation of refractive index with y

across each slice, so that the refractive index is given by

n(x) =

⎧⎪⎪⎨
⎪⎪⎩

nair, −B � y < 0

n(r)(x, z),
r − 1

m
W � y <

r

m
W

nair, W � y � L

(3.8)

for r = 1, . . . , m, the system of equations (3.1) is solved. This is achieved by solving
the decoupled ordinary differential equations (3.3) in the rth slice and then matching
the tangents of the light ray path at the edge of each slice, starting at the camera and
tracing back towards the light source. From (3.4a), in the rth slice the path ζ (r)(y)
must satisfy

ζ (r)(y) = a0 + a1y +
y2

2n

∂n

∂z
, (3.9)

for two constants a0 and a1. These constants allow the tangents at the front and back
of each slice to be matched to the surrounding slices, meaning that the light ray is
continuous and differentiable. This process generates the difference equation

ζ (r−1) − 2ζ (r) + ζ (r+1)

�2
= c(r) + c(r+1), (3.10)
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where

c(r) =
1

2n(r)

∂n(r)

∂z
, and � =

W

m
. (3.11)

The constants ζi = ζ (0) and ζe = ζ (m). Matching tangents on the back of the tank yields
the result

�ζa =
W

2m

m∑
r=1

{[
W

m
(2r − 1) + 2B

]
β

ρ00

∂ρ ′(r)

∂z

}
. (3.12a)

A similar calculation can be performed for �ξa giving

�ξa =
W

2m

m∑
r=1

{[
W

m
(2r − 1) + 2B

]
β

ρ00

∂ρ ′(r)

∂x

}
. (3.12b)

Note that the two-dimensional formulæ (3.7) are recovered by setting all the ρ ′(r)

terms equal.
Equation (3.12) is simply a weighted average according to how close the rth slice is

to the front of the tank, y = W . This is expected since a small deflection of the light
ray at the front of the tank causes a larger shift in the apparent origin of the light ray
than a deflection of the same size at the back of the tank. In the limit m → ∞ (3.12)
becomes

(�ξa, �ζa) =
β

ρ00

∫ W

0

(y + B)

(
∂ρ1

∂x
,
∂ρ1

∂z

)
dy. (3.13)

If the flow is symmetrical about the plane y = W/2 then the results (3.12) and
(3.13) can be simplified to give, for m even

(�ξa, �ζa) =
W (W + 2B)

m

m/2∑
r=1

β

ρ00

(
∂ρ ′(r)

∂x
,
∂ρ ′(r)

∂z

)
, (3.14a)

for m odd

(�ξa, �ζa) =
W (W + 2B)

m

{[
(m−1)/2∑

r=1

β

ρ00

(
∂ρ ′(r)

∂x
,
∂ρ ′(r)

∂z
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+
β

2ρ00

(
∂ρ ′([m+1]/2)

∂x
,
∂ρ ′([m+1]/2)

∂z

)}
, (3.14b)

and in the limit m → ∞

(�ξa, �ζa) =
β(W + 2B)

ρ00

∫ W/2

0

(
∂ρ ′

∂x
,
∂ρ ′

∂z

)
dy, (3.14c)

which can be derived directly from (3.3) by integration by parts. Equations (3.14)
are not weighted averages because deflections are occurring in pairs, centred on the
middle of the tank, y = W/2. This averaging process will be referred to as ‘breadth
averaging’.

3.2.2. Application to sphere towing experiments

The most simple application to a ‘sphere towing’ experiment is to compare the
gradients of the measured, breadth-averaged density perturbation (3.12)–(3.13) to the
theory of § 2. It follows from (2.3) that

∇ρ ′
p ∼ −m0ρ0N

3

2πg

Rh

R4c2
g|A|1/2

cos

[
N |Rz|

cg

+
π

2
H (A)

] (
RxRz, RyRz, −R2

h

)
. (3.15)
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Ensuring that the sphere is towed in the central plane of the tank means that the
simplified results (3.14) can be used.

It is possible to directly infer the vertical velocity field in the special case of a sphere
towed steadily for a long time, such that transient waves may be considered negligible.
Then, the surrounding wave field is in a steady state, such that ∂/∂t ≡ −v0 · ∇. From
the linearized Euler equations, it follows that

∂ρ ′

∂t
+ w

dρ0

dz
= 0,

and therefore

w ≈ g

N2ρ00

v0 · ∇ρ ′. (3.16)

This relationship allows the comparison of the perturbed density field with the vertical
velocity field as well as comparison with the gradients of the density fields.

3.3. Experimental set-up

The experimental tank had dimensions 2.5 m × 0.7 m × 0.8 m Behind the tank was a
2.0 m × 1.0 m light bank using 6 pairs of 70 W high-frequency (28 kHz) fluorescent
tubes. A digital Atmel-Grenoble Camelia 8 Megapixel camera was used to capture the
experiments. The camera’s resolution was 3500 × 2300 pixels and the images were
digitized to 12 bits. This camera was used in conjunction with an LCD shutter and
a Nikon zoom lens (Nikkor 35 ∼ 135 mm F3.5 ∼ 4.5). The area of the experiment
visualized was approximately 1.0 m × 0.6 m, with B = 1.15 m, L =3.10 m.

The stratification was created using the well-known ‘double-buckets’ technique
(Fortuin 1960). This technique creates nominally linear density stratifications, but
these were found to be extremely close to the exponential distributions assumed in
the analysis of § 2, differing by at most 0.02 % for the range of densities considered
here.

The dot pattern on the mask consisted of transparent dots placed a random
perturbation away from a regular grid. The dots were of size 1 mm on a black
background, with a relative diameter of dot to mean spacing of 0.25. A Perspex
sphere of diameter 4 × 10−2 m was towed through the fluid by a stainless steel rod of
diameter 4 × 10−3 m driven by a motor. The rod was held at a constant angle by a
guide attached to the motor.

As a preliminary check on the experimental technique, an initial unperturbed image
of the dot pattern was captured with the sphere out of the tank. The sphere was
then very slowly pushed through the tank to the full extent of the rod. The fluid
was then allowed to settle. After a long time the images of the dots returned to their
unperturbed positions. The initial unperturbed image is referred to as the ‘reference
image’.

After the fluid has come to rest, the sphere is then towed through the tank and
the perturbations to the dot pattern are recorded and compared with the pattern in
the reference image. The data are then processed to give the gradient of the density
perturbation fields.

4. Results
Figure 9 is a comparison between the analysis presented in § 2 and experiment.

In the experiment F = 0.23, R = 180 and α = 60.0◦. The calculated vertical gradient
of density perturbation fields in figure 9(a–e) have a resolution of 300 × 300 and
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Figure 9. For caption see facing page.
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where they have been breadth averaged it has been done over 300 slices, as described
in § 3.2. The analytical model used in all the figures in this section was the composite
uniform model of § 2.2. Figure 9(a) is the point-source model in the centreplane y� = 0.†
Figure 9(b) is the point-source model but breadth averaged in the y�-direction. The
effect of this averaging is a homogenization of the wave amplitudes with respect
to the distance from the source. As can be seen, the apparent amplitude of the
waves near the source in 9(b) is much smaller than in 9(a). Figures 9(c)–9(d) are
the same as figures 9(a)–9(b) except with a spherical source instead of a point
source generating the flow field. Again the breadth averaging homogenizes the wave
amplitudes with respect to distance from the source. The differences in the internal
waves generated between the point source and the spherical source is most clearly
seen in the centreplane, y� =0 (i.e. figures 9a and 9c). The interference patterns caused
by the finite size of the source are most clearly observed beneath the tow line. There
is strong destructive interference exhibited by the spherical source leading to much
smaller-amplitude waves below the tow line than for the point source. Figure 9(e) is
the same as figure 9(d) but includes attenuation of the waves due to viscosity. As was
seen in § 2.5 the viscosity damps the higher-frequency waves and so the interference
region in the cone above the tow line (Scase & Dalziel 2004) is less apparent.

The theory compares well with the experimental result, figure 9(f ). The most
obvious discrepancy is that the phase near to the source is shifted. The error near
to the source is expected since the analysis in § 2 is asymptotic and is only valid far
away from the source.

Although the sphere was towed slowly to minimize the size of the trailing wake
some wake was unavoidable with the present experimental set-up. (Note that the
‘wake’ referred to here is the classical wake left behind a towed body, e.g. Batchelor
(1967, § 5.12) and not the wave pattern behind a towed body, e.g. Kelvin’s ship wake
(e.g. Thomson 1891; Lighthill 1978).) The effect of this wake was to destroy the
coherency of the fluid motions immediately behind the sphere and thus disrupt the
generation of the internal waves. Hence, in the region between the tow line and
vertically below the sphere in the experimental figure 9(f ), fewer waves are visible
than in the theoretical figure 9(e).

As the sphere is impulsively started, a fan of waves is produced. These waves can
propagate ahead of the sphere and reflect off the free surface of the fluid in the tank.
These reflections are of small amplitude and have been ignored.

Figure 11 is a comparison of the analysis in § 2.2 with experiment. Unlike figure 9,
in figure 11(a, b), α = 30◦, F =0.28 and R = 200 and in figure 11(c, d), α = 2.9◦,
F =0.48 and R = 350. Figure 11(a) is the calculated vertical gradient of the density
perturbation field, using the spherical-source model with viscous attenuation, for the

† The structure is the same as would be observed for a line (cylinder) source, apart from a
difference in amplitude (Scase 2003).

Figure 9. Comparison of analysis from § 2.2 with experiment. The sphere, radius a = 2.1 ×
10−2 m has been towed at α = π/3 for t = 86.0 s. The buoyancy frequency N =0.91 s−1, the
reference density of the stratification is ρ00 = 1041 kg m−3, the tow speed is v0 = 4.5 × 10−3 m
s−1 and the kinematic viscosity is ν = 1.0 × 10−6 m2 s−1. The field shown is the vertical gradient
of the density perturbation field: (a) the point-source model in the y =0 plane; (b) the
breadth-averaged model; (c) the sphere model in the y = 0 plane; (d) the breadth-averaged
sphere model; (e) the breadth-averaged sphere model with viscous attenuation of waves; (f ) the
experimental result. The colour bar is shown in figure 10.
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Figure 10. Colour bar for figures 9 and 11. The units are kg m−4.
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Figure 11. Comparison of analysis from § 2.2 (a, c) with experiment (b, d). The angle of tow
is α = 31.0◦ and the tow speed is v0 = 5.1 × 10−3 m s−1 in (a) and (b), whereas α = 2.9◦ and
the tow speed is v0 = 8.8 × 10−3 m s−1 in (c) and (d). The other flow parameters are as in
figure 9. The field shown is the vertical gradient of the density perturbation field. (a) and (c)
are calculated using the spherical source model with viscous attenuation of the waves. The
colour bar in figure 10 shows the scale.

experiment shown in figure 11(b). Good general agreement is shown between the
theory and the experiment. The wake behind the sphere can also clearly be seen
in figure 11. There is good agreement both far from and near to the source in
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figure 11(c, d) which is equivalent to figure 11(a, b) but for a tow angle of α = 2.9◦.
However, as discussed below and illustrated in figure 12 there is some misalignment
of the surfaces of constant phase.

Smirnov & Chashechkin (1998) used a dipolar source model of the form

m(r, t) = m0[�(r − v0t + a) − �(r − v0t − a)], (4.1)

where a = v̂0a ‘is the vector of distance between the source and the sink’. They found
that their calculated wavefronts did not align with their experimental results and
suggest

‘The best agreement between theoretical and experimental phase surfaces corresponds
to the position of a virtual source on the line of motion at a distance of 1.4 cm
upstream from the centre of the [1 cm diameter] sphere.’

They further suggest that some of this misalignment is due to ‘some variations in the
buoyancy frequency’. It is possible that this is part of the reason for the discrepancies
between the theoretical calculations and the experimental figures in the present study
since the errors in measuring the Froude number and the non-dimensionalization
scale are not large enough to account for the discrepancies alone.

The error in measuring the frame rate of the camera is estimated to be 0.5 % and
the error in measuring the positional shift of the sphere between the initial and final
images is also estimated to be 0.5 %. This gives an approximate error in calculating
the speed of the sphere as 1 %. Errors due to parallax are largely avoided by defining
a real-world coordinate system (for use in calculating distances from the experimental
images) when a grid with known mesh size is submerged in the stratified fluid. The
greatest single source of errors in the sphere towing experiments comes from the
calculation of the buoyancy frequency. Typically the calculated error estimates in
curve fitting to the data were 1 %. The sphere that was towed through the tank
had a diameter of 4 × 10−2 m ± 0.05 %. This leads to an approximate error in the
calculation in both the Froude number and the non-dimensionalization of the axes
of 2 %.

Figure 12 compares the theoretical values for the vertical gradient of the density
perturbation field along the line x� = −10 from figure 11(c) to the experimental
values found in figure 11(d). The dotted curve was measured from experiment. The
solid curve is the calculated theoretical amplitude. The theoretical line has been
moved vertically up a non-dimensional distance 2. This corresponds to a dimensional
distance of 1.9 × 10−2 m, just under one sphere radius. As was noted, Smirnov &
Chashechkin (1998) also found the better agreement between experiment and theory
by offsetting the source.

The agreement between the theory and the experiment in figure 12 is good. There is
some experimental noise around z� = 0 caused by the camera looking at the surface of
the water in the tank. Internal reflection of the light means that the camera can see a
dot pattern in the surface of the water. There is inevitably some surface disturbance as
the sphere is towed through the tank; this disturbance causes very large perturbations
to the dot image reflected by the surface and thus synthetic schlieren falsely registers
extreme density changes. Figure 12 shows that the theory predicts the phase speed
and the amplitude of the waves very well.

The evidence from figures 9, 11 and 12 suggests that there is generally good agree-
ment between the linear theoretical model and the experiments, as was also found by
Stevenson (1968), Stevenson & Thomas (1969), Peat & Stevenson (1975) and Smirnov
& Chashechkin (1998). Good agreement was found between the linear theoretical
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Figure 12. Comparison of the amplitudes of the vertical gradient of the density perturbation
field for the theory in figure 11(c) (solid line) with the experiment in figure 11(d) (dashed line)
along the line x� = −10. The amplitude has been averaged over the breadth of the tank (i.e.
over y� as described in § 3.2).

model and the experiments within the causality envelope in Scase (2003, chap. 6);
however transient waves were not included theoretically, and so no waves were
predicted outside the causality envelope.

5. Conclusions
In an attempt to compare experiments with the theoretical models of Voisin

(1994) and Scase & Dalziel (2004) it was discovered that Voisin’s description of
transient start-up waves was inappropriate. The predicted waves had unphysically
large velocities near the boundary of the causality envelope. The origin of this
difficulty was that the model used a non-uniform approximation to the internal
potential. In § 2.2 the unphysical velocities were removed using a composite uniform
approximation to the wave field. The modified expression for the transient start-up
waves predicted physically realistic velocities for the waves. A further benefit of this
composite uniform approximation is that it means that the internal potential field,
and hence the velocity field and pressure fields, are continuous and differentiable
across the boundary of the causality envelope.

The theory underlying synthetic schlieren has been developed for use with three-
dimensional flows. Although the new theory is not fully three-dimensional, it allows
comparison of breadth-averaged experiments and theory. This technique was applied
to internal wave fields generated by a sphere towed through a density-stratified fluid.
The use of synthetic schlieren has allowed the visualization of large areas of internal
wave generation. Comparison with theory has required the careful calculation of both
the permanent wave field built up by the motion of the source and also the transient
wave field created when the source is impulsively started.

The evidence from figures 9, 11 and 12 suggests that there is generally good
agreement between the theoretical model and the experiments, as was also found by
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Stevenson (1968), Stevenson & Thomas (1969), Peat & Stevenson (1975) and Smirnov
& Chashechkin (1998). It was found (as seen previously by Smirnov & Chashechkin
1998) that a small offset of the theoretical source was required in order to get the best
phase agreement (figure 12). The new analysis provides a more physically realistic
treatment of transient start-up waves. The synthetic schlieren experimental technique
allows much larger areas of the wave field to be visualized than has previously been
possible.

The authors would like to acknowledge the comments of an anonymous referee
which lead to a much clearer description of the results presented in §§ 2.2–2.4. This
work was partially funded by studentship NER/S/A/2000/03262 from the Natural
Environment Research Council who also provided support for the development of
the experimental techniques under grant NER/B/S/2001/00242.

Appendix. Light ray equations without linearization
Equations (4a) and (4b) in Dalziel et al. (2000) (equations (3.1) in the present paper)

can be solved without making the approximation of small dξ/dy, dζ/dy. Let χ(y) =
dξ/dy and κ(y) = dζ/dy. Then dividing (3.1a) by (3.1b) gives

dχ

dκ
=

∂n/∂x

∂n/∂z
= σ, (A 1)

where σ is defined as the ratio of the gradients of the refractive indices and is
independent of y. Since χ(0) = tan φξ = ξ ′

0 and κ(0) = tan φζ = ζ ′
0, it follows that

χ(y) = σ (κ(y) − ζ ′
0) + ξ ′

0. (A 2)

Thus, using equation (3.1b),

dκ

dy
= {1 + [σ (κ − ζ ′

0) + ξ ′
0]

2 + κ2}1

n

∂n

∂z
. (A 3)

Defining γ 2 = 1 + σ 2 + (ξ ′
0 − σζ ′

0)
2 it follows that

ξ = ξ0 − 1

2(1 + σ 2)∂n/∂x

{
2y

∂n

∂x
(σζ ′

0 − ξ ′
0)

+ 2σ 2n log

∣∣∣∣cos

{
y|σγ |
σ 2n

∂n

∂x
+ tan−1

[
σ (ζ ′

0 + σξ ′
0)

|σγ |

]}∣∣∣∣
+ σ 2n log

[(
1 + ζ ′2

0 + ξ ′2
0

)
(1 + σ 2)

γ 2

]}
, (A 4)

and similarly

ζ = ζ0 +
1

2(1 + σ 2)∂n/∂z

{
2y

∂n

∂x
(σζ ′

0 − ξ ′
0)

− 2n log

∣∣∣∣cos

{
y|γ |
n

∂n

∂z
+ tan−1

[
ζ ′
0 + σξ ′

0

|γ |
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− n log
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1 + ζ ′2
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0

)
(1 + σ 2)

γ 2

]}
. (A 5)
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By calculating the ratio of the right-hand side to the left-hand side of equations (4a)
and (4b) in Dalziel et al. and expanding as a series in y, the fractional error in the
linearization approximation is given as

1

1 + ζ ′2
0 + ξ ′2

0

− 2

n
(
1 + ζ ′2

0 + ξ ′2
0

)2

(
ξ ′
0

∂n

∂x
+ ζ ′

0

∂n

∂z

)
y + O(y2), (A 6)

which shows that the small-deviation approximation leads to a small but systematic
error.
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